Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms
نویسنده
چکیده
The absolute loss is the absolute difference between the desired and predicted outcome. This paper demonstrates worst-case upper bounds on the absolute loss for the Perceptron learning algorithm and the Exponentiated Update learning algorithm, which is related to the Weighted Majority algorithm. The bounds characterize the behavior of the algorithms over any sequence of trials, where each trial consists of an example and a desired outcome interval (any value in the interval is an acceptable outcome). The worst-case absolute loss of both algorithms is bounded by: the absolute loss of the best linear function in a comparison class, plus a constant dependent on the initial weight vector, plus a per-trial loss. The per-trial loss can be eliminated if the learning algorithm is allowed a tolerance from the desired outcome. For concept learning, the worst-case bounds lead to mistake bounds that are comparable to past results. ∗This paper is a revised and extended version of Bylander [4].
منابع مشابه
Worst-Case Absolute Loss Bounds for Linear Learning Algorithms
The absolute loss is the absolute difference between the desired and predicted outcome. I demonstrate worst-case upper bounds on the absolute loss for the perceptron algorithm and an exponentiated update algorithm related to the Weighted Majority algorithm. The bounds characterize the behavior of the algorithms over any sequence of trials, where each trial consists of an example and a desired o...
متن کاملLearning Linear Functions with Quadratic and Linear Multiplicative Updates
We analyze variations of multiplicative updates for learning linear functions online. These can be described as substituting exponentiation in the Exponentiated Gradient (EG) algorithm with quadratic and linear functions. Both kinds of updates substitute exponentiation with simpler operations and reduce dependence on the parameter that specifies the sum of the weights during learning. In partic...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کاملExponentiated Gradient Versus Gradient Descent for Linear Predictors
We consider two algorithms for on-line prediction based on a linear model. The algorithms are the well-known gradient descent (GD) algorithm and a new algorithm, which we call EG. They both maintain a weight vector using simple updates. For the GD algorithm, the update is based on subtracting the gradient of the squared error made on a prediction. The EG algorithm uses the components of the gra...
متن کاملRelative loss bounds for single neurons
We analyze and compare the well-known gradient descent algorithm and the more recent exponentiated gradient algorithm for training a single neuron with an arbitrary transfer function. Both algorithms are easily generalized to larger neural networks, and the generalization of gradient descent is the standard backpropagation algorithm. In this paper we prove worst-case loss bounds for both algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artif. Intell.
دوره 106 شماره
صفحات -
تاریخ انتشار 1998